¹H AND ¹³C NMR SPECTRA OF BISHOMOBENZOBARRELENES¹

Keizo Kitahonoki, Kensuke Sakurawi, Kazuo Tori* and Masako Ueyama

Shionogi Research Laboratory, Shionogi & Co., Ltd., Fukushima-ku, Osaka, 553 Japan

(Received in Japan 29 November 1975, received in UK for publication 16 December 1975)

In the course of our ¹H NMR studies of the shielding effects exerted by a cyclopropane ring,² we synthesized two isomeric bishomobenzobarrelenes, exo, endo- and endo, endo-benzotetracyclo[3 3 2.0^{2,4}0^{6,8}]decenes (2 and 3, respectively), and related compounds 4, 5, 7, and 8 to test the applicability of the known rule for cyclopropane anisotropy ^{2,†} Some anomalies in ¹H and ¹³C chemical shifts were found in the spectra of 3, although the spectra of the other compounds generally showed features expected as a whole

Structural assignments of the compounds were based on their 100-MHz ¹H NMR spectra Detailed examinations of the spectra by double and triple resonance techniques gave the signal assignments. The TABLE lists the $\delta_{\rm H}$ data obtained together with the signal shift ($\Delta\delta_{\rm H}$) values due to introduction of a cyclopropane ring

Comparisons of the δ_{H} values between Z, ϑ , and ϑ^{4} revealed that the ethano-bridge protons, $H_{b(exo)}$ and $H_{b(endo)}$, in Z are more shielded by the cyclopropane-ring anisotropy,^{2,3} and that the cyclopropane geminal protons, $H_{g(exo)}$ and $H_{g(endo)}$, in ϑ are much shielded by the ring-current effect of the benzene

⁺ Simmons-Smith reaction⁵ of benzobarrelene $(1)^{6a}$, ^b led to a mixture of 2 and 3 together with two isomeric homobenzobarrelenes (4 and 5) which were separated by TLC to give pure colorless prisms, 2 in 4 9% yield, m p 92-93° [v_{max} (Nujol) 3005, 3050, and 1025 cm⁻¹], 3 in 4.8% yield, m p 131-132° [v_{max} (Nujol) 3045, 3010, 1023, and 703 cm⁻¹], 4 in 23 2% yield, m p 47-48 5° [v_{max} (Nujol) 3070, 3020, 1015, and 695 cm⁻¹], and 5 in trace, m p 43° Exo- and endo-benzotricyclo[3.2 2 0²,⁴] nonenes (7 and 8, respectively) were prepared from benzobicyclo[2 2 2] octadiene ($6)^{6b}$, ^c by the same reaction 7 in 0.1% yield, m p 62-63° [v_{max} (Nujol) 3005, 3080, and 1026 cm⁻¹] and 8 in 40 5% yield, m p. 76-77° [v_{max} (Nujol) 3071, 3010, 1032, and 998 cm⁻¹]. Hydrogenation of 4 and 5 on Pd-C afforded 7 and 8, respectively See the Scheme

263

ring ⁴ Similarly, the cyclopropane-ring anisotropy shields the ethylenic protons H_c in $\underline{4}$ and deshields those in $\underline{5}$ as compared with those in $\underline{6}$ ⁴. These observations assessed the structures of $\underline{7}$ and $\underline{8}$ as well as those of $\underline{4}$ and $\underline{5}$ as shown in the Scheme. The structures of $\underline{2}$ and $\underline{3}$ were easily assigned, the spectrum of the latter shows the degenerate ¹H signals due to the two cyclopropane rings, one of which also appeared at a considerably higher field (δ -0.77), clearly showing that $\underline{3}$ is endo, endo-bishomobenzobarrelene

As can be seen from the TABLE, the $H_{g(exo)}$ and $H_{g(endo)}$ signals were shifted downfield by +0 22 and +0 19 ppm, respectively, on going from 8 to 3, contrary to the expectation that they would be shifted upfield by the anisotropy of the cyclopropane introduced, whereas the signal shifts from 7 to 2 and 8 to 2 showed values expected with the anisotropy

-					Parition					~
Compound		a	ь	Ь'	c	d	e ^{b,c}	fb,c	g	gʻ
24	δ _Η	2 93	1 74(exo) ^b 1 40(endo)		-	-	7 (2	-	
7	⁸ н	3 05	I 60(exo) ^b I 07(endo)	I 07	-	-	70	2		0 74(exo) 1 09(endo)
Z-2	∆δ _H (ppm)	0 12	-0 14(exo) -0 33(endo)		-	-	0 0	0	-	1 07(6:1007
8	⁸ н	3 18	1 75(exo) ^b	1 05	-	-	691	7 03	-0 11(exo)	
<u>8-2</u>	∆δ _H (ppm)	0 25	0 01(exo) -0 05(endo)		-	-	-0 11	10 0		
2	δ _H	3 31	086	0 98	-	-	693	7 00	-0 18(exo) -1 05(endo)	0 70(exo) 1 74(endo)
2-2	Δδ _H (ppm)	0 26	-0 74(exo)	-0 09	-	-	-0 09	-0 02	1 05(0100)	~0 04(exo)
<u>2-8</u>	∆δ _H (ppm)	0 13	-0 37(endo)	-0 19	-	-	0 02	-0 03	-0 07(exo) -0 09(endo)	0.00(6100)
3	⁸ н	3 42	1 28		-	-	682	7 07	0 11(exo) -0 77(endo)	
3-2	Δδ _Η (ppm)	0 24	-0 47(exo)	023	-	-	-0 0 9	0 04	0 22(exo) 0 19(endo)	
¢.4	⁸ н	384	1 49(exo) ^b 1 44(endo)		6 40	-	7 00	694	-	
4 .	δH	386	1 16		6 04	-	7 02	688		0 76(exo) 0 56(endo)
4- 2	Δδ _H (ppm)	0 02	-0 28(endo)		-0 36	-	0 02	-0 06	-	0 00(0100)
<u>5</u>	δ _H	392	1 33		6 67	-	6 94		0 34(exo) -0 39(endo)	
5-6	Δδ _H (ppm)	0 08	-0 16(exo)		0 27	-	-0 0 6	0 00	-	·
24	δ _C	34 1	26 3		-	144 1	123 5	125 6	-	
7 ~ 7-9	δ _C Δδ _c (ppm)	346 05	24 0 -2 3	20 5	-	147 0 2 9	123 8 03	125 6 0 0	-	13 4
8~~	د. ۶ _C	34 9	25 8	11 2	-	140 2	124 0	126 4	27	
<u></u>	Δδ _C (ppm)	08	-05	10.0	-	-39	100	125 7	-	12.0
2-7	ο <u>ο</u> Δδ _C (ppm)	34 0 0 0	-16 1	-15 -68	-	-4 1	-0 9	01	-0.5	-0 6
2-2	τιοC(bbu)	36 1	14.8	-0 5	-	136 1	124 3	126.0	7.5	
ž_ <u>j-8</u>	Δδ _C (ppm)	1 2	-11 0	36	-	~4 1	03	-04	4 8	
6 ⁴	δC	40 2	25 8		134 9	144 1	122 5	124 9	-	
4 	δ _C Δδ _C (ppm)	41 2 1 0	16 7 -9 1		130 9 -4 0	147 4 3 3	122 9 0 4	124 5 -0 4	-	13 7
~										

TABLE $~~^{1}H~(\delta_{H})$ and $~^{13}C~(\delta_{C})$ Chemical Shift Data a

^a ¹H NMR spectra were taken with a Varian HA-100 spectrometer at 100 MHz in CCl₄ (about 5 w/v %), accuracy of the chemical shift, $\delta_{\rm H}$ is ±0.01. ¹³C NMR spectra were recorded on a Varian NV-14 FT NMR spectrometer at 15.087 MHz in CDCl₃ containing TMS as an internal reference in 8-mm sample tubes, the accuracy of $\delta_{\rm C}$ is about ±0.1

^b The accuracy is about ±0 02 for δ_{H} because these values are based on the first-order analyses

^C ¹³C signals were assigned according to G. Jikeli, W. Herrig and H. Gunther, J. Amer. Chem. Soc. <u>96</u>, 323 (1974)

**

d Not determined

Recently,⁷ we reported that strong steric γ -effects⁸ (upfield shift) were observed with ¹³C NMR signals due to the bridge-methylene carbon and the ethylenic carbons in exo- and endo-tricyclo[3 2 1 0^{2,4}] octenes, respectively, as compared with those in norbornene. Similar effects, though to lesser extents, were observed in the spectra of exo- and endo-2,5-dicyanotricyclo[4 2 1 0^{2,5}] non-7-enes ⁹ Thus, in order to examine the effect of a cyclopropane ring upon ¹³C chemical shifts in a bicyclo[2 2 2] octene ring, the natural-abundance ¹³C FT NMR spectra, both ¹H noise-decoupled and single-frequency off-resonance decoupled, ⁸ of the compounds described here were determined, the results are also shown in the TABLE

As a result, the objective γ -effect was found to be weak (about -2~-4 ppm) as expected from the longer distances between the cyclopropane proton and the bridge and the ring-juncture carbons which interact. An unexpected finding was that introduction of an endo-cyclopropane ring to skeleton 8 (from 8 to 3) causes a considerable downfield shift of cyclopropane-carbon g (+4 8 ppm), on the other hand, introduction of an exo-cyclopropane ring (from 8 to 2) has no significant effect upon carbon g (-0.5 ppm)

Research on similar phenomena is in progress

References

- (1) NMR studies of bridged ring systems, XX for Part XIX, see K Tori, T Tsushima, H Tanida, K Kushida and S Satoh, Org_Magn_Resonance 6, 324 (1974)
- (2) K Tori and K Kitahonoki, J Amer Chem Soc 87, 386 (1965)
- (3) C D Paulter, R S Boikess, J I Brauman and S Winstein, Ibid 24, 229 (1972)
- (4) K Tori, Y Takano and K Kitahonoki, Chem Ber 97, 2798 (1964)
- (5) H. E. Simmons, T. L. Cairns, S. A. Vladuchick and C. M. Hoiness, Org. Reactions 20, 1 (1973)
- (6) (a) R G Miller and M Stiles, J Amer Chem Soc <u>85</u>, 1798 (1963), (b) K Kitahonoki and Y Takano, Tetrahedron Letters <u>1597 (1963)</u>, Tetrahedron <u>25</u>, 2417 (1969), (c) H E Simmons, J Amer Chem Soc <u>83</u>, 1057 (1961), (d) S J Cristol and N L Hause, Ibid <u>74</u>, 2193 (1952)
- (7) K Tori, M Ueyama, T Tsuji, H Matsumura, H Tanida, H Iwamura, K Kushida, T Nishida and 5 Satoh, Tetrahedron Letters 327 (1974)
- (8) G C Levy and G L Nelson, "Carbon-13 Nuclear Magnetic Resonance for Organic Chemists," Wiley-Interscience, New York (1972), J B Stothers, "Carbon-13 NMR Spectroscopy," Academic Press, New York (1972)
- (9) D Belluš, K von Bredow, H Sauter and C D Weis, Helv Chim Acta 56, 3004 (1973)